viernes, 8 de abril de 2016

EDAD CONTEMPORANEA

EDAD CONTEMPORANEA
GAUSS

Gauss devuelve el caracter geométrico que impregna parte del Análisis Matemático, fundamentalmente con dos contribuciones: el nacimiento de la Variable Compleja y de la Geometría Diferencial.
Pero no es son las únicas contribuciones de éste genio al campo de la Geometría. En su adolescencia se vio dividido entre dedicarse a la Filología o a la Matemática. A los 17 descubrió la manera de construir el polígono regular de 17 lados, y la condición necesaria y suficiente para que un polígono regular pueda construirse. Esto determinó su vocación. En su primera demostración (de las cinco que realizó a lo largo de su carrera) sentó las bases del Análisis de Variable Compleja, dando por primera vez la descripción geométrica de los números complejos como vectores fijos del plano (no en este lenguaje, que será introducido mucho más tarde).
Resultado de imagen para imagenes de gauss



FIN DE LOS GRANDES PROBLEMAS DE LA ANTIGUEDAD

La controversia sobre el V postulado
Como ya se ha adelantado, Gauss es el primero en construir una geometría (un modelo del espacio) en el que no se cumple el V postulado de Euclides, pero no publica su descubrimiento. Son Bolyai y Lobatchevsky quienes, de manera independiente y simultaneamente publican cada uno una geometría distinta en la que no se verifica tampoco el V postulado. ¿Qué quiere decir esto? Tanto Bolyai como Lobatchevsky parten de un objeto geometrico y establecen sobre él unos postulados que son idénticos a los de Euclides en Los Elementos, excepto el quinto. Pretenden originalmente razonar por reducción al absurdo: si el V postulado depende de los otros cuatro, cuando lo sustituya por aquél que dice exactamente lo contrario, he de llegar a alguna contradicción lógica.
                          

No hay comentarios:

Publicar un comentario